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Abstract— This paper addresses one of the fundamental tasks
for the aerial assembly of tensile structures: aerial knot-tying. It
presents a framework for representing and realizing knots with
flying machines. A suitable representation of the knot topology
is introduced taking into account the use of supporting elements
and the characteristics of flying machines. This information
is then translated into three-dimensional trajectories for the
vehicle performing the aerial knot-tying task. Furthermore,
preliminary results suggest that the quality of the resulting knot
can be improved by the use of an iterative learning algorithm.
Experiments are performed with quadrocopters to validate the
proposed approach. An accompanying video shows the aerial
knot-tying process.

I. INTRODUCTION

The past years have seen an impressive increase of work
on aerial manipulation: unmanned aerial vehicles are no
longer passive spectators of their environment, but they
physically interact with it. Force control methods for flying
machines have been presented, among others, in [1]-[4],
allowing them to safely be in contact with their surroundings
or with humans. Researchers are also investigating how to
extend the dexterity of these vehicles by equipping them with
manipulators [5], [6]. These results are of particular interest
for the field of robotic construction. Indeed, flying machines
capable of interaction with their environment increase the
potential of robotic construction: they can be used to move
construction elements to locations not accessible by ground
robots, to maneuver in or around existing objects to fasten
construction elements, and to fly in or around already built
structures to manipulate them.

As such, researchers have been motivated to study aerial
construction, a field that addresses the construction of struc-
tures with the aid of flying machines [7]. During the Flight
Assembled Architecture installation, a 6-m-tall tower was
assembled by four quadrocopters [8], while first steps into
aerial construction of truss structures have been presented
in [9]. The ARCAS project [10] focuses on aerial assembly
by helicopters equipped with robotic arms and an aerial 3D
printer has been presented in [11].

Among the various robotic construction methods, the
assembly of load-bearing structures using tensile elements,
such as ropes and cables, has lately generated interest among
roboticists [12]-[14] and architects [15]-[17] alike. Such
elements are relatively lightweight, have a high structural
strength, and can span large distances. Furthermore, they
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fully exploit the capabilities of flying machines and, at the
same time, mitigate some of their biggest drawbacks such as
limited accuracy and payload.

This paper discusses one of the fundamental tasks for
the aerial assembly of tensile structures: aerial knot-tying.
It defines a framework for representing and realizing knots
by extending the results of [18] to account for the use
of supporting elements and flying machines. Furthermore,
it presents preliminary results that suggest that a learning
scheme can be used to improve the final quality of the result-
ing knot. While rope manipulation and knot-tying have been
extensively studied in the context of dexterous manipulation
(see, for example, [19] and reference therein), this work
approaches knot-tying by taking into account the specific
characteristics of flying machines. The vehicles considered
in this work are equipped with a spool and are therefore
able to deploy rope as they fly. Unlike dexterous arms, flying
machines do not have the ability to manipulate ropes to create
arbitrary loops and crossings. They are, however, capable of
freely move in space one end of the rope, giving them the
ability to tie knots by flying around existing support elements
and by maneuvering between already placed ropes.

The paper is organized as follows: Section II introduces
a representation of knots suitable for flying machines. Sec-
tion III describes how information about the knot topology
is translated into three-dimensional trajectories. Section IV
explores the use of an iterative learning algorithm to improve
the quality of the resulting knot. Section V discusses the
experimental results. A video of experiments validating the
approach can be found in the accompanying multimedia
submission.

II. KNOT REPRESENTATION

Tensile structures are assembled by connecting linear
elements (such as ropes) to support elements or already built
structural components and are composed by concatenating
two different design elements: nodes and links. A node is
a point of intersection of a linear construction element with
another object or with itself, whereas a rope spanned between
two structural support points generates a link. In order to
allow the designer of the structure to create structures with
different geometries and structural properties, a library of
parameterized building elements is desired. In this section,
we provide a general framework that allows to describe
knots (a special type of nodes) that are realizable by flying
machines.

A. Knot representation

Knot theory is a branch of topology that studies mathe-
matical knots: They differ from daily-life knots in that they
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Fig. 1. Projection and P-data representation of the munter hitch on a plane.
Starting from the dot, each crossing is labeled with increasing numbers
(black). Crossings with the bar are identified with a zero (red). The third
row is then constructed as explained in Section II-B.

are closed because their ends are joined together. Knots
are often represented using knot diagrams, where the knot
is appropriately projected onto a plane and crossings are
identified and numbered, thus defining the knot topology. In
this work, P-data representation [20] is used to represent
a knot in matrix form. It has been shown that multiple
diagrams of the same knot exist and Reidemeister moves
can be used to convert between them [21].

Knot theory alone is not enough when dealing with actual
knot-tying tasks: indeed, realizable knots must be open
knots, i.e. they need two free terminals (which correspond
to the ends of the rope). This leads to the concept of cross
moves [18]: A cross move adds or removes one intersection,
while one terminal crosses a rope segment. This is what
generates the knot with an actual rope. In [18], it has been
shown that repetitions of Reidemeister moves and cross
moves can be used to realize any knot-tying tasks. This is
very important for the aerial knot-tying task considered in
this work: As flying machines act on one end of the rope
by moving it around and crossing already placed segments,
their actions correspond to cross moves.

B. Introducing support elements

When building tensile structures, knots are executed to cre-
ate structural elements by joining material together. There-
fore, the description of a knot must include support elements,
i.e. already existing elements on which the knot is actually
performed. To this end, the knot representation method
presented in [18] is extended to include support elements
in the form of bars. Figure 1 shows the diagram of a munter
hitch and its representation. Note that the fixed support is
visualized in form of a horizontal line. With the projected
picture, the knot representation can be constructed as follows:

1) Without loss of generality, the starting point is identi-
fied as a free terminal below the horizontal line.

2) Following the rope, each crossing is labeled with
increasing numbers, resulting in the first and second
row of a matrix as exemplified in Figure 1. Note that
the second row contains zeros for crossings between
the rope and the support element.

3) A numeric attribute is also assigned to each crossing.
Its sign is negative if the rope crosses the other element
underneath, it is positive otherwise; the absolute value
is then assigned as follows: for rope to rope crossings,
the absolute value encodes the side from which the

other segment is intersected:

from left to right — {1}; from right to left — {2}.

Rope-support crossings are numbered with increasing
order from left to right.

C. Knot as a sequence of cross moves

The suggested knot representation fully defines the knot
topology and includes information about the fixed support
element. In order to actually tie a knot with a flying machine,
a sequence of cross moves is necessary. Figure 2 shows
step-by-step the cross moves that are required to create a
munter hitch. It can be seen how a cross move always adds
a column at the end of the P-data matrix. The sequence of
cross moves required for a knot can therefore be identified
from its representation. Note how the value in the second
row tells what must be crossed (support or rope), while the
third row informs about how (direction and orientation). A
sequence of cross moves can be extracted from the P-data
matrix by removing the first occurrence of any crossings that
appear twice.

Note that the representation discussed in this section
allows also for the description of knots that are actually
not realizable with a flying machine. Indeed, depending on
the knot orientation, the gravitational force will affect the
shape of the rope during the realization, possibly reducing
the space available to execute certain cross moves, such as
passing through loops.

III. KNOT REALIZATION

The knot representation of the previous section describes
the topology of knots that have been appropriately projected
onto a plane, but no spatial information (such as position,
orientation, or size) is contained in their representation. In
this section, it is shown how a sequence of cross moves
is translated into a three-dimensional trajectory for the fly-
ing machine that performs the aerial knot-tying task, thus
demonstrating the appropriateness of the suggested knot
representation.

A. The knot plane in three-dimensional space

The purpose of the cross moves defined above is to inter-
sect the supporting element or an already existing segment of
the rope in order to realize the desired knot. In the suggested
representation, a cross move already defines whether the
rope has to pass above or underneath the other element;
what is missing, however, are the starting and end positions
of the cross move. To this end, the following parameters
are introduced to identify a plane in the three-dimensional
space on which a knot is executed: the position of the
knot pynot, the orientation of the fixed support €p,,-, and the
flying machine approach direction €,4, which depends on
the position of the previous knot and the length of the rope
in-between knots. These parameters depend on the desired
shape of the structure. On this plane, the following points are
then identified: N, SW, and SE. Their location is motivated
by the fact that the flying machine has to keep a minimum
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Fig. 2.

A munter hitch realized with a sequence of cross moves. The red dot indicates the end of the rope attached to the flying machine. The P-data

representation is shown at every step. The sequence of cross moves is extracted from the P-data matrix by removing the first occurrence of any crossings
that appear twice. The cross moves are then converted into appropriate trajectories for the flying machine.

distance from both the supporting element and the already
placed rope and has to pass through three different regions
in order to realize the knots. These points and the associated
regions can be seen in Figure 3.

After having defined the location of these points, we
have to define the order in which they will be visited.
The first cross move brings the vehicle coming from the
approach direction to point N passing above or below the
bar, according to the third row of the cross move. In the
case of the munter hitch depicted in Figure 2, the second
cross move leads to point SE, the third to SW, and the fourth
back to N. The sequence of cross moves is translated into a
sequence of positions using a predefined set of policies. A
policy determines the next point to be visited based on the
current point, and the current, previous, and following cross
moves. It is therefore independent from the knot type.

The realization of a knot then reduces to suitable trajecto-
ries that connect points N, SW, and SE, passing either above
or underneath the support element or the existing rope.

B. Cross trajectory

We define a cross trajectory as the spatial equivalent of a
cross move in the knot representation. The initial and final
points of a cross trajectory are either N, SW, or SE, and are
determined by the sequence of cross moves and the set of

[
’ Rope L

Fig. 3. The knot plane located at py,,o¢ and defined by the vectors €y
and €,4. Points N, SW, SE and S are found by imposing a minimum
distance d between the flying machine tying the knot and the bar and the
already placed rope. Note that at least one point in every shaded region is
required in order to create the knot.

policies, as discussed in the previous section. In this section,
we define the cross trajectory to be flown by the flying
machine. Because a cross move overcomes an obstacle (a
rope segment or a bar), we adopt semi-circles, whose ends
are denoted py and pi, placed on a plane orthogonal to
the knot projection plane as depicted in Figure 4. Such a
shape keeps the vehicle center of mass at a constant distance
from the obstacle. Furthermore, we define the orientation
vector €, which is orthogonal to the knot plane and whose
sign is given by the third value of the cross move. The
position of the vehicle is then given by

p(t) = T(é’u cos (wt) + € sin (wt)), (1)

where w is the angular velocity, and the circle radius r and
the orientation vector €| are obtained as follows:
r= 3l Bl ) = i
2 L A - Al
As can be seen in Figure 4, cross trajectories are not
actually performed from py to p7. The reason for this is that,
in this work, the aerial knot-tying task is performed with
quadrocopters. Continuity in the trajectory is therefore re-
quired at least up to the acceleration. Since cross trajectories
are defined as constant velocity arcs, they have to be joined
together appropriately, using state-to-state (position, velocity,
acceleration, and heading) trajectory generation algorithms
such as the one described in [22].

2)

Fig. 4. Cross trajectories (red) connecting points N, SW, and SE. The
black line represents the fixed support element, while the blue line indicates
the approach direction.
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Beside the three-dimensional coordinates, the definition
of a trajectory for a quadrocopter must include the vehicle’s
heading. In [12], we introduced our setup, and we discussed
how the vehicle’s heading is fundamental for the correct
deployment of the rope: since the rope release point is not
located at the center of the flying machine, it should be
aligned to the straight line connecting the rope release point
on the vehicle to the last structural support point. Because
these points are known, the cross trajectory fully defines
the vehicle’s heading at every time. However, since certain
configurations might lead to discontinuity when the vehicle
crosses the supporting element, a slew rate in the vehicle’s
heading is introduced.

IV. LEARNING REALIZATION

Experiments have shown that given the same trajec-
tory and similar initial conditions, the final knot has very
repeatable properties. However, the final result does not
necessarily match the desired outcome, in that the knot is
shifted along the supporting element, or that the length of
the rope joining two knots is incorrect. This motivates the
use of a learning algorithm to learn and compensate for
these systematic errors. We use here a method based on the
policy gradient learning scheme introduced in [23]: A simple
model capturing the main dynamics of the system is used to
derive an error correction matrix for iteratively improving
the final state of the knot. This is done by measuring the
final state of the knot after an iteration and then updating
some key parameters of the knot-tying trajectory presented
in the previous section. In this section, we present a model
that captures the relevant dynamics of the knot-tying task and
identify suitable trajectory parameters that strongly influence
the final state of the knot.

A. Iterative learning scheme

Consider the state ¢(t) of the rope during the knot-
tying task and a model capturing its dynamics. Then, we
can compute the Jacobian matrix J of the nominal final
state ¢(T") with respect to some trajectory parameters o
around an initial parameter guess «y:

(T, )

7= "o ®)

a=oq

Assuming J is full row rank, we can then correct for the
errors in the final state by modifying the chosen trajectory
parameters. After iteration ¢, the parameters are adapted
according to:

ot =a' — 0C(Ag), 4)

where C = JT(JJT)~! is the (pseudo) inverse of the
Jacobian matrix, o is the step size, and (Agq)’ is the final
state error measured after iteration ¢. Next, we provide the
rationale for the derivation of the knot model (used to
calculate the matrix correction matrix C') and for the choice
of the trajectory parameters a.

B. Knot model

We represent the state of a rope during the knot-tying
task with ¢(t) = [I(¢), y(¢)] and the corresponding time
derivatives, where [(¢) is the length of the rope before the
knot and y(t) represents the lateral translation of a knot along
the bar. This is motivated by the fact that the length of the
rope between subsequent knots and the position of the knots
in three-dimensional space define the shape of the structure.
Because knots are performed on a fixed bar or an already
placed rope, they are constrained in two dimensions, allowing
thus for one translational degree of freedom only. We now
need a dynamic model that captures the main behaviour of
these quantities during the aerial knot-tying task.

The state of the knot is influenced by the forces acting
on both ends of the knot: the force produced by the flying
machine, denoted f,, and the force due to the rope’s own
weight, denoted f,.. The force f, is directly controlled
through a motor mounted to the spool that releases the rope
on board of the flying machine deploying the rope. Because
ropes can only be subject to tension, f,, must be positive. The
force f, represents the force that acts at the other extremity
of the knot. It depends on the position of the previous knot
and on the current length of the rope. It can be approximated
using the catenary, the curve that a rope assumes under its
own weight when supported only at its ends, as follows:

fr = fawcosh <ff + atanh <5z> - 6””) ) (5)

A l

where 4, and J. are the horizontal and vertical distance
between ends, w is the rope weight per meter, and f} is
the solution to:

_ 5 2
<2fh sinh (m)) +62-1*=0. (6)

Furthermore, once the rope is in contact with the bar,
friction plays a significant role. When a rope is wound around
a cylinder, exerting a very small force on one end of the knot
enables higher loads on the other end [24]: if S; and S5
are two forces acting at the two extremities of a knot, with
So > 51, the rope will not slide if the following relationship
holds:

Sy < S1exp (u \9\), @)

where p represents the static friction coefficient between the
rope and the cylinder, and the angle 6 indicates how much
the rope is wound around it. The more the rope is wound, the
smaller the holding load on one side needs to be. A similar
reasoning can be applied in order to capture the Coulomb
friction: the more the rope is wound, the higher will be the
coefficient of friction.

Friction is usually modeled as a combination of static and
Coloumb friction resulting in non-smooth dynamic models.
However, because we want to obtain the Jacobian matrix J,
a smooth model capturing the relevant knot dynamics is
required. We observe that as the rope is wound around a
bar, the effects of f, and f,. decrease as the friction force
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increases exponentially according to (7). Because of these
considerations, we suggest the following dynamic model:

i) = PP o) ®)

1
where C; = exp (p; 6(t)|) capture the static and dynamic
friction properties of a rope wound on a cylinder. The
matrix P appropriately projects the three-dimensional forces
onto the two-dimensional coordinates [(¢) and y(t), and
depends on the position p(t) of the flying machine and on

the direction of the bar &},

C. Parameterized knot-tying trajectory

The knot-tying trajectory described in the previous section
consists of circular trajectories connecting points N, SW, and
SE, and in the force profile f,(¢). As expected, experiments
have shown that I(¢) is strongly influenced by f,. Further-
more, the lateral displacement y(¢) of the knot along the fixed
support element is influenced by both f,, and the location of
point N. These considerations lead to the following choice
of trajectory parameters « for the learning algorithm: The
lateral displacement of point N, denoted «; the value of f,
when the vehicle is on the left of the knot, denoted «; the
value of f, when the vehicle is on the right of the knot,
denoted .

The model presented in this section does not perfectly
capture the complex knot-tying dynamics. Its purpose, how-
ever, is only to provide a meaningful gradient for the learning
algorithm. This gradient captures not only the right direction,
which has been shown in [25] to be enough for the iterative
learning scheme to converge, but also the fact that as the rope
is wound around the bar the knot is more and more effective.
Furthermore, the resulting gradient is influenced by the knot
type (i.e. the different sequence of cross moves) and the bar
direction. This is important to systematically generalize the
learning to different types of knots and bar configurations.

V. EXPERIMENTAL RESULTS

The suitability of the proposed approach to describe knots
for the aerial knot-tying task is experimentally demonstrated
and can be seen in the accompanying video. Furthermore,
preliminary results for the iterative learning strategy are
obtained by applying it to the realization of a munter hitch.

A. Experimental setup

We demonstrate the ability of quadrocopters to perform
knot-tying tasks on small custom robots in the Flying
Machine Arena [26], a 10m x 10m x 10m testbed for
quadrocopter research. The space is equipped with a motion
capture system that provides vehicle position and attitude
measurements. This information is sent to a PC, which runs
algorithms and control strategies, and sends commands to the
quadrocopter at approximately S0Hz. The quadrocopters are
equipped with a motorized rope dispenser mechanism that
allows them to control the force f, acting on the rope. The
rope is not tracked.

/D
1 2 3. 4 5
Iteration

Length error [cm]

Fig. 5. The averaged length error at subsequent iterations of the learning
algorithm. The error grows at iteration 5 because as the desired force f,,
increases, the flight behaviour of the quadrocopter gets worse and the vehicle
struggles to follow the desired trajectories. In future work, the simple model
presented in this paper should be extended to capture these effects.

B. Knot realization

The accompanying video shows a quadrocopter perform-
ing the aerial knot-tying task with the framework presented
in this work. For this experiment, knots were selected from
a library of predefined building elements. The designer of
the structure provided the following information: type and
location of every knot, orientation of the fixed supports ele-
ments, and desired rope length between links. The trajectory
of the flying machine was then calculated according to the
methods described in sections II and III.

C. Learning the munter hitch

In this section, we provide preliminary results that validate
the learning approach presented above. To this goal, we
consider a munter hitch similar to the one represented in Fig-
ure 1. The knot is realized at the end of a link that connects
two bars at a distance of 6.03 meters. The vectors defining
the knot plane are approximated as: €, = [0, —1, 0] and
€ad = [1,0,0]. The desired length of the rope joining
the knots is 6.06 meters. The experiment consists of five
iterations, with the knot being performed three times at every
iteration i. The final state error (Ag)® is averaged over the
three repetitions. Figure 5 shows the error for the length of
the rope [. The error decreases for the first four iterations, but
then starts increasing. This happens because as the desired

;.‘ é ‘i /] i k LinelE

Fig. 6. The munter hitch before (left) and after (right) learning. The length
error is reduced from 18 to 5 centimeters. The lateral position of the knot
has also been improved.

0
E —
<-0.5 R
T 1 2 3 4 5 6
X [m]

Fig. 7. The top line represents the desired rope shape. The middle shape is
obtained after applying the learning scheme. The bottom shape was obtained
during the first iteration. The shapes have been reconstructed using the
catenary equations.
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force f, (given by the parameters «; and as) increases,
the flight behaviour of the quadrocopter gets worse and the
vehicle struggles to follow the desired trajectories. This is
not captured in the simple model presented in the previous
section: particularly, the assumption that the force f, is
constantly applied to the rope is no longer valid, as the spool
mechanism is not able to compensate for the fast motions
of the vehicle. However, the learning algorithm leads to
noticeable improvements: The length error has been reduced
(see Figure 6) and, consequently, the vertical error in the
lower part of the link has decreased from 44 centimeters to
17 centimeters, as illustrated in Figure 7.

VI. CONCLUSION

In this paper, we presented a flexible framework that
allows the representation and realization of knots for aerial
knot-tying. Furthermore, preliminary results show that a
learning scheme can be used to improve the final quality
of the knot. These results are crucial for the assembly of
complex tensile structures with flying machines and will be
applied in the realization of a 1:1 footbridge construction.
Future work includes the refinement of the model used for
learning in order to include additional effects such as the
dynamics of the flying machine deploying the rope, and the
generalization of the learned parameters to other knot types
and bar configurations. Furthermore, the knot representation
framework can be extended to include additional supporting
elements and additional cross trajectories. An interesting
problem is also the realization of knots that contain loops,
where the vehicle has to fly between hanging segments of
the already deployed rope before tying the knot.
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