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A Limiting Property of the Matrix Exponential
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Abstract—A limiting property of the matrix exponential is proven: if the
(1,1)-block of a 2-by-2 block matrix becomes “arbitrarily small” in a lim-
iting process, the matrix exponential of that matrix tends to zero in the
(1,1)-, (1,2)-, and (2,1)-blocks. The limiting process is such that either the log
norm of the (1,1)-block goes to negative infinity, or, for a certain polynomial
dependency, the matrix associated with the largest power of the variable
that tends to infinity is stable. The limiting property is useful for simpli-
fication of dynamic systems that exhibit modes with sufficiently different
time scales. The obtained limit then implies the decoupling of the corre-
sponding dynamics.

Index Terms—Limiting property, logarithmic norm, matrix exponential,
time-scale separation.

I. INTRODUCTION

The subject of study in this paper is the matrix exponential
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Fig. 1. Linear system with feedback on the first part of the state vector, the
“fast” states .

in the limit as grows large for in some sense to be made
precise later. All matrices are complex, and is a real parameter. For
different classes of , we derive sufficient (and in one case also
necessary) conditions on such that, for all

(2)

That is, we are interested in conditions guaranteeing that the coupling
blocks (1,2) and (2,1) vanish (in addition to the (1,1)-block).
In addition to being an interesting matrix problem, the result can

be applied to control systems that exhibit significantly different time
scales, such as systems with high-gain feedback on some states. For
example, consider the system

(3)

(4)

with static feedback on the states (index f for “fast” and s for
“slow”),

(5)

The matrix function then represents the feedback gain parame-
trized by . The feedback system is depicted in Fig. 1. A more general
multi-loop feedback system with additional reference inputs is consid-
ered in [1].
The matrix exponential (1) is a fundamental matrix (see e.g., [2])

of the feedback system (3)–(5). The limit (2) means that the dynamics
of and are decoupled in the limit as grows large.
In this context, we seek to determine what type of feedback yields a
decoupling of the states in feedback from the remaining ones in the
limit as the feedback gains become arbitrarily large.
This question is of interest, for example, when designing multi-loop

control systems with high-gain inner loops, since a decoupling of the
states allows for a simplified system description and, hence, a simpli-
fied control design. The matrix result herein is applied in [1] to de-
rive a time-scale separation algorithm for a cascaded control system
with high-gain inner feedback loops. The algorithm yields a system
description that includes the plant dynamics and the effect of the inner
feedback loops. The obtained representation is useful, for example, for
designing an outer-loop controller. This methodology is applied in the
design of a cascaded feedback control system for an inverted pendulum
in [1] and for a balancing cube (a multi-body 3-D inverted pendulum)
in [3].
Related to the problem studied herein is the work by Campbell et al.,

[4], [5]. The authors consider the matrix exponential with its argument
being a polynomial in and derive conditions for its convergence
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in the limit as . In [4], for example, Campbell et al. present a
necessary and sufficient condition for pointwise convergence of

(6)

as . While they are interested in general convergence to some
limit, we seek conditions that yield the particular limit (2); that is,
where the cross coupling blocks (1,2) and (2,1) vanish.
Before deriving the technical results, this article continues with nota-

tion and preliminaries in Section II. In Section III, we establish lemmas
and cite theorems that are required for the development of the main re-
sults, which follows in Section IV. The main results are three different
conditions on that guarantee (2): a sufficient condition that is
based on the log norm (defined in (8) of the next section) of
and that makes no prior assumption on the function type of (The-
orem 3); a necessary and sufficient condition for the case when is
affine (Theorem 4); and another sufficient condition for the case when

has an affine term and an additional polynomial term ,
(Theorem 5). The latter two results are based on [4], [5], while the first
one is established independently of those. Numerical examples illus-
trating the applicability of the different theorems are given throughout
in Section IV. The article concludes with remarks in Section V.
A preliminary version of Theorem 3 was first published in [1].

II. NOTATION AND PRELIMINARIES

We use , , and to denote real numbers, complex numbers,
and nonnegative real numbers, respectively. For the derivations in the
paper, we work exclusively with the vector 2-norm and its induced
matrix norm; that is, for and

(7)

For , denotes the log norm of , [6]–[8]:

(8)

where is the conjugate transpose of . We shall exploit the fol-
lowing properties of , [6]–[8]:

(9)

(10)

(11)

where and .
Let denote the spectrum of (the set of all eigen-

values of ignoring algebraic multiplicity), and let denote the
open left half plane in (i.e., ), [7].
The matrix is called stable if ; and it is called
semistable if and, if , then 0 is
semisimple (i.e., its algebraic and geometric multiplicity are identical),
[7]. The index of , denoted Index , is the smallest nonnegative in-
teger such that , [7]. The Darzin inverse of
is the unique matrix satisfying , ,
and with , [7], [9]. For ,
define , [5], where is the identity
matrix.
The following two facts are useful in later derivations; the proofs are

straightforward and therefore omitted.
Fact 1: Consider the matrix differential equation

(12)

where continuously differentiable,
continuous, , , and . The

unique solution of (12) is

(13)

Fact 2: Let be continuous. Then

(14)

III. LEMMAS

This section establishes preliminary lemmas and restates two the-
orems from [4], [5], which are used in Section IV to prove the main
results of this paper.
Consider the matrix ordinary differential equation (ODE):

(15)

(16)

with and continuously differen-
tiable, and complex matrices , , , , , , and
of appropriate dimensions. Notice that the matrix exponential (1) is a
fundamental matrix of the ODE system given by (15) and (16), which
is why the study of (15), (16) will be useful in the later development.
By Fact 1, the unique solutions to (15) and (16) (considered individ-

ually) are, for all ,

(17)

(18)

Lemmas 2 and 3 below treat the solutions (17) and (18) for different ini-
tial conditions in the limit as the log norm of tends to negative
infinity. To establish these two lemmas, the following Gronwall-type
inequality is used:
Lemma 1 (Adapted from [10], Theorem 1.9): Let , ,

be real-valued, nonnegative, continuous functions on . Let
be a real-valued, nonnegative, continuous function for

, and suppose

Then

where , , and
.

Lemma 2: Consider the solutions (17) and (18) with the initial con-
ditions and . If , then for

(19)

Proof: Since , there exists an
such that, for all

(20)

(21)

In the following, we consider sufficiently large such that .
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Substituting (17) into (18) and using the initial conditions
and yields

(22)

where the order of integration in the last term was interchanged. This
is valid by Fubini’s theorem, [11, Prop. 5.36], and the facts that the
integrand is continuous, and the integration region can be expressed
in either of the two ways: or

.
Using (9), (10), Fact 2, and submultiplicativity of the induced matrix

norm, we obtain the inequality

(23)

(24)

where

Applying Lemma 1 to (24) yields, for all ,

(25)

where and .
Next, we derive bounds for , and , using the

properties (20), (21). First

where by (21), and
is a continuous function in . Therefore

(26)

Similarly, we obtain a bound for . With ,

where is a continuous function in
. Therefore

(27)

With (26) and (27), we can now bound (25)

(28)

where is continuous. Since
, follows directly from

(28). Furthermore, with (17) and

(29)

Therefore, for .
Lemma 3: Consider the solutions (17) and (18) with the initial con-

ditions and . If , then for

(30)

Proof: The proof is essentially analogous to the proof of
Lemma 2.
Let such that (20) and (21) hold. Substituting (18) into

(17) and using the initial conditions and yields, after
interchange of integration in the second term

and, therefore

(31)
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Now, consider the substitutions for the first term in (31) and
for the inner integral of the second term, which yields

(32)

Comparing this inequality to (23), we find that (32) is obtained from
(23) by the substitutions , , and

. Therefore, we can derive an upper bound on
the same way as in the proof of Lemma 2. Corresponding to (28) we
get, for all

where the continuous function is obtained from
by substituting and . Thus,

. Furthermore, with (18) and ,

Therefore, , and hence
.

Lemma 2 and 3 are used in the next section to establish one of the
main results of this note (Theorem 3). The other two results (Theorem
4 and 5) presented in the next section are based on [4], [5], and, in
particular on:
Theorem 1 ([4], Theorem 1): Let . Then

converges pointwise as for if and only if is
semistable. If is semistable, then

(33)

Theorem 2 ([5], Theorem 1): Suppose Index and is
semistable. Then

(34)

converges as for an , for all , if and only if
is semistable. Suppose is semistable. If , then (34)

converges to

(35)

If , then the limit of (34) is the same as (35), except that a term

(36)

is added into the exponential.

IV. MAIN RESULTS

This section establishes conditions on that guarantee (2). In
Section IV-A, a sufficient condition is presented that is based on the log
norm of (Theorem 3). In Sections IV-B and IV-C, we consider
the case when has a particular polynomial structure; namely

and (37)

(38)

respectively. For the affine case (37), a necessary and sufficient con-
dition is derived (Theorem 4); and for (38), we present a sufficient
condition (Theorem 5). Following each theorem, we give numerical
examples in order to illustrate the applicability of the different results.
If represents a feedback controller gain such as in (5), (37)

and (38) describe explicit parametrizations of the controller gain via
the scalar tuning parameter . If one seeks to analyze a controller
parametrization that is not explicitly given as a function of , the log
norm condition can be useful, as shall be illustrated later in Example
1. The specific functional dependencies considered in (37) and (38)
(affine and polynomial) correspond to those that are also studied in [4],
[5] (therein as polynomials in , cf. Theorem 1 and 2).

A. Condition Based on the Log Norm of

A sufficient condition for (2) is the log norm of becoming
arbitrarily small. This result is obtained by considering the matrix ODE
that is solved uniquely by the matrix exponential (1) and then applying
Lemmas 2 and 3 of Section III.

Theorem 3: Let , and let

be a matrix function of the real parameter . If
, then (2) holds for all .

Proof: By Fact 1, the matrix exponential

is the unique solution to the matrix ODE

(39)

Note that is continuously differentiable.
By subdividing into block matrices of appropriate dimensions,

we can write (39) equivalently as

(40)

(41)

Notice that (40) and (41) represent the matrix ODEs considered in
Lemmas 2 and 3, respectively. Using these two lemmas, we therefore
conclude that, for ,

We illustrate Theorem 3 with the following examples.
Example 1 (Discretization and High-Gain Feedback): Consider the

feedback control example from the introduction given by (3)–(5), and
assume a diagonal structure for the feedback gain with diagonal
elements . Suppose we are interested in a discrete-time descrip-
tion of the closed-loop system (3)–(5) at a rate . The discretized
system reads

(42)
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Now, assume , that is, the individual controller gains are at
least as large as . Then

(43)
and, by Theorem 3, (42) becomes, in the limit as ,

(44)

(45)

that is, the slow and fast dynamics are decoupled.
In [1] and [3, p. 65], Theorem 3 is applied to control systems that

are more general than (3)–(5), where, in particular, the controller (5)
is modified to track a reference input changing at the rate . The ob-
tained discrete-time model of the control system is then used to design
an outer-loop controller that commands the reference input to the mod-
ified controller (5), which then acts as the inner-loop controller of the
cascaded control system.
Remark 1: Note that the function is not given explicitly in

Example 1. The estimate with the diagonal structure of
is enough to verify the condition of Theorem 3. In contrast, the

convergence results in Section IV-B and Section IV-C require an ex-
plicit description of .
Example 2: Consider (1) with

Notice that is stable for all (both eigenvalues are ),
and that both eigenvalues go to negative infinity as . But

,
and the limit of (1) for is (can be computed using [7, Fact
11.14.2])

which is clearly different from (2) in the (1,2)-block.
Remark 2: The preceding example shows that it does not suffice for

(2) to hold that the eigenvalues of tend to negative infinity.

B. Affine

We study the limit of (1) with affine as in (37). The following
result provides a necessary and sufficient condition for (2). It is ob-
tained using Theorem 1.

Theorem 4: Let , and let

with and . Then, (2)
holds for if and only if is stable.

Proof: We first prove sufficiency. Let

(46)

Since is stable, is semistable, and it follows from Theorem 1
(by substituting with ) that

(47)

Since is stable, it is invertible and . Hence,

we have

(48)

where the last equality follows from [7, Fact 11.14.2], and is a place-
holder left unspecified. Therefore, we get from (47)

(49)

(50)

which completes the sufficiency part of the proof.
For the necessity proof, assume (2) holds. First notice that, for the

limit to exist, it follows
from Theorem 1 that is semistable. From the definition of in (46),
it can be seen that this implies that is semistable, which further
implies that

(51)

From being semistable and Theorem 1, it follows that (47) holds.
Hence, the limit in (47) is equal to the limit in (2):

(52)

Now, let

(53)

Using and (53), it follows from (52) (by consid-

ering the first block column) that

(54)

Since the matrix exponential is nonsingular [7, Prop. 11.2.8], in

(53) is nonsingular, and has full column rank. Therefore, (54)

implies . From this and the
rank formula [7, Lemma 2.5.2]

, it follows that has full rank.
Thus, also has full rank, which implies , [7, Cor.
2.6.6, Prop. 5.5.20]. This and (51) imply , i.e.,

is stable.
Example 3: Consider

Then is stable, and, by Theorem 4, (2) holds for any .
Remark 3: For as in Example 3, we compute

. Example
3 hence shows that the condition in Theorem 3 is not a necessary
condition.

C. Polynomial

We study the limit of (1) with as in (38); that is, compared to
(37), possesses an additional power with . A sufficient
condition for convergence is derived using Theorem 2. The condition
is different from the sufficient condition in Theorem 3 (one does not
imply the other) as shall be pointed out later.
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Theorem 5: Let , and let

with and ,
. If is stable, then (2) holds for .

Proof: Let , be as in (46), and let . Since

is stable, is semistable. Furthermore, since
( has full rank). Thus, the assumptions

of Theorem 2 are satisfied.

With , we get

and , which is
semistable. Therefore, by Theorem 2,

converges to the limit specified by (35) and
(36) where , , are replaced by , , . We next compute the
expressions (35) and (36).
From , we get .

Furthermore

and, hence

(55)

Using these results, expression (35) yields the desired limit in (2)

Since

expression (36) is 0.
Example 4: Consider

Then is stable, and, by Theorem 5, (2) holds for any . Notice that
the instability of is irrelevant. From

we see that Theorem 3 is not
helpful here.
Example 5: Consider

Theorem 5 is not helpful here, since (neither is Theorem 2). But
as ; hence, (2)

follows from Theorem 3.

Remark 4: Examples 4 and 5 show that there are problems with
which are covered by Theorem 3, but

not by Theorem 5; and vice versa. In general, both theorems provide
sufficient conditions for different problem classes.

V. CONCLUDING REMARKS

The three theorems presented in this technical note guarantee the
limiting property (2) of the matrix exponential (1); essentially, a “large
enough” in the (1,1)-block forces all but the (2,2)-block of the
matrix exponential to tend to zero in the limit. Theorem 3 states a suffi-
cient condition for (2) based on the log norm of , and Theorems
4 and 5 provide sufficient conditions for having a particular poly-
nomial form. For the affine case (Theorem 4), the obtained condition
is also necessary.
Theorems 4 and 5 herein are obtained using the results by Campbell

et al.[4], [5]. Theorem 3, however, is obtained independently of those
results. Its method of proof is based on the matrix differential equation
that is solved uniquely by the matrix exponential (1), and on bounding
its solution using a Gronwall-type inequality. In contrast, Campbell et
al. make use of Cauchy’s integral formula to prove their result in [4],
for example.
The numerical examples herein were chosen to highlight specific

mathematical properties of the results. The limiting property of the
matrix exponential has been applied to practical examples in [1] (an
inverted pendulum) and [3] (a balancing cube). Therein, Theorem 3
is used to derive a time-scale separation algorithm that computes a
discrete-time model representing the plant dynamics under high-gain
feedback on some of the plant’s states. This model is then used to de-
sign a stabilizing outer-loop controller.
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